INTERNET OF THINGS
(1oT)

Unit:1 INTRODUCTION 15 hours

Introduction - Definition & characteristics of 10T - physical design of IoT - logical design
of 10T - 10T enabling Technologies - 10T levels & Deployment templates. Domain specific
lots : Home Automation - cities - Environment - Energy - retail - logistics - Agriculture -
Industry i Health and life style.

Unit:2 IOT and M2M 12 hours

0T and M2M - Deference between lot and M2M - SDN and NFV for lot - IoT systems
management - SNMP - YANG - NETOPEER

Unit:3 10T SPECIFICATION 15 hours

0T platforms design Methodology - purpose and specification - process specification -
Domain model specification - Information model specification - Service specification -
loT level specification - functional view specification - operational view specification -
Device and component Integrators - Application Development.

Unit:4 LOGICAL DESIGN USING 15 hours
PHYTHON

Logical design using python - Installing python - type conversions - control flow -

functions - modules - File handling - classes. 10T physical devices and End points, building

blocks of 10T device - Raspberry Pi - Linux on Raspberry Pi - Raspberry Pi interfaces.

Unit:5 I0OT AND CLOUD 15 hours
COMPUTING

loT physical servers & cloud computing - WAMP - Xively cloud for 10T - python Web
application frame work - Amazon web services for 10T.

Text Book(s) Reference Book

Internet of Things - A hands on Internet of Things - Srinivasa K.G.,
Approach Authors: Arshdeep Bahga, Siddesh G.M. Hanumantha Raju R.
Vijay Madisetti Publisher: Universities ~ Publisher: Cengage Learning India pvt.
press. Ltd (2018).

UNIT I

e 10T definition

+ Characteristics of 10T

* Physical Design of 10T
+ Logical Design of loT
+ loT Protocols

* 10T Levels & Deployment Templates

Definition of loT

A dynamic global network infrastructure with self-configuring capabilities based on standard
and interoperable communication protocols where physical and virtual "things™ have identities, physical
attributes, and virtual personalities and use intelligent interfaces, and are seamlessly integrated into the
information network, often communicate data associated with users and their environments.

Characteristics of 10T

* Dynamic & Self-Adapting

+ Self-Configuring

* Interoperable Communication Protocols
* Unique Identity

* Integrated into Information Networks

Physical Design of 10T

« The "Things" in 10T usually refers to 10T devices which have unique identities and can perform
remote sensing, actuating and monitoring capabilities.

* 10T devices can:

+ Exchange data with other connected devices and applications (directly or indirectly)

* Collect data from other devices and process the data locally

+ Send the data to centralized servers or cloud-based application back-ends for processing the data

+ Perform some tasks locally and other tasks within the 10T infrastructure, based on temporal and
space constraints.

Generic block diagram of an 10T Device

An loT device may consist of several interfaces for connections to other devices, both wired and
wireless.

+ 1/O interfaces for sensors
« Interfaces for Internet connectivity
« Memory and storage interfaces

+ Audio/video interface

NAND/NOR

DDR1/DDR2/DDR3

loT Protocols

Link Layer

+ 802.3 — Ethernet

+ 802.11 — WiFi

¢+ 802.16 — WiMax

¢+ 802.15.4 — LR-WPAN
+ 2G/3G/4AG

+ Network/Internet Layer
* IPv4

* IPv6

* 6LOWPAN

* Transport Layer

+ TCP « UDP

+ Application Layer

« HTTP

+ CoAP

+ WebSocket

« MQTT

+ XMPP

+ DDS

+ AMQ

WebSockets

802.3 - Ethernet = 802.16 - WiMax 2G/3G/LTE -

Cellular
802.11 - WiFi 802.15.4 - LR-WPAN

Logical Design of loT

Logical design of an 10T system refers to an abstract representation of the entities and processes
without going into the low-level specifics of the implementation.

An loT system comprises of a number of functional blocks that provide the system the capabilities
for identification, sensing, actuation, communication, and management.

Request-Response communication model

* Request-Response is a communication model in which the client sends requests to the server and the
server responds to the requests. * When the server receives a request, it decides how to respond,
fetches the data, retrieves resource representations, prepares the response, and then sends the response

to the client.

Receives requests
Sends Request from client,
requests to processes
server Response requests, looks

up/fetches
resources,
prepares
response and
sends response
to client

Publish-Subscribe communication Model
Publish-Subscribe is a communication model that involves publishers, brokers and consumers.

+ Publishers are the source of data. Publishers send the data to the topics which are managed by the
broker. Publishers are not aware of the consumers.

+ Consumers subscribe to the topics which are managed by the broker.

+ When the broker receives data for a topic from the publisher, it sends the data to all the subscribed
consumers.

Message published Topic-1
to Topic-1 Subscribers:
Consumer-1,
Consumer-2
Message published
to Topic-2 Topic-2
Subscribers:

Consumer-3

Push-Pull communication model

Push-Pull is a communication model in which the data producers push the data to queues and the
consumers pull the data from the queues. Producers do not need to be aware of the consumers.

* Queues help in decoupling the messaging between the producers and consumers.

* Queues also act as a buffer which helps in situations when there is a mismatch between the rate at
which the producers push data and the rate rate at which the consumers pull data.

Queues

Publisher

[Consumer-1
Sends
messages to
queue Messages pushed Messages pulled

to queues from queues
R I I - Consumer-2

Exclusive Pair communication model

+ Exclusive Pair is a bidirectional, fully duplex communication model that uses a persistent
connection between the client and server.

+ Once the connection is setup it remains open until the client sends a request to close the connection.

* Client and server can send messages to each other after connection setup.

Request to setup Connection

v

Response accepting the request

~

Message from Client to Server
Server

v

Client

Message from Server to Client

&
-

Connection close request

Connection close response

REST-based Communication APIs

Representational State Transfer (REST) is a set of architectural principles by which you can design web
services and web APIs that focus on a system’s resources and how resource states are addressed and
transferred.

* REST APIs follow the request- response communication model.

« The REST architectural constraints apply to the components, connectors, and data elements, within a

distributed hypermedia system.

HTTP Client HTTP Packet
HTTP Command
REST GET PUT
Aware
HTTP Client PR POST DELETE

REST Payload

JSON XML

WebSocket-based Communication APIs

HTTP Server

Authorization

Representations

Resource

REST-ful Web
Service
Resources
URI URI

Representations

Resource

o WebSocket APIs allow bi- directional, full duplex communication between clients and servers.

« WebSocket APIs follow the exclusive pair communication model.

WebSocket Protocol

Client

Server

Request to setup WebSocket Connection

Response accepting the request

Y

Data frame

Data frame

Y

Data frame

Data frame

Y

Connection close request

Y

Initial Handshake
{over HTTP)

Bidirectional Communication
(over persistent
WebSocket connection)

Exclusive Pair communication model

o Exclusive Pair is a bidirectional, fully duplex communication model that uses a persistent
connection between the client and server.

+ Once the connection is setup it remains open until the client sends a request to close the connection.

* Client and server can send messages to each other after connection setup.

Request to setup Connection

\ 4

Response accepting the request

-

Message from Client to Server
Client > Server

Message from Server to Client

-
<+

Connection close request

\ 4

Connection close response

-

0T Levels & Deployment Templates
An 10T system comprises of the following components:

+ Device: An loT device allows identification, remote sensing, actuating and remote monitoring
capabilities. You learned about various examples of 10T devices in section.

+ Resource: Resources are software components on the 10T device for accessing, processing, and
storing sensor information, or controlling actuators connected to the device. Resources also include the
software components that enable network access for the device.

+ Controller Service: Controller service is a native service that runs on the device and interacts with
the web services. Controller service sends data from the device to the web service and receives
commands from the application (via web services) for controlling the device.

0T Levels & Deployment Templates
+ Database: Database can be either local or in the cloud and stores the data generated by the 10T device.

« Web Service: Web services serve as a link between the 10T device, application, database and analysis
components. Web service can be either implemented using HTTP and REST principles (REST service)
or using WebSocket protocol (WebSocket service).

+ Analysis Component: The Analysis Component is responsible for analyzing the loT data and
generate results in a form which are easy for the user to understand.

+ Application: IoT applications provide an interface that the users can use to control and monitor
various aspects of the 10T system. Applications also allow users to view the system status and view the
processed data.

loT LevelS
A level-1

o |oT system has a single node/device that performs sensing and/or actuation, stores data, performs
analysis and hosts the application.

* Level-1 loT systems are suitable for modeling low- cost and low-complexity solutions where the
data involved is not big and the analysis requirements are not computationally intensive.

loT Level-1
Local Cloud

App
,A.

REST/WebSocket
Communication
P
> REST/WebSocket
Services

Database

—> Controlier Service

A

Resource |
4A.
i\

Device |

O

Monitoring Node
performs analysis, stores data

0T Level-2
o Alevel-2 10T system has a single node that performs sensing and/or actuation and local analysis.
+ Data is stored in the cloud and application is usually cloud- based.

* Level-2 10T systems are suitable for solutions where the data involved is big, however, the primary
analysis requirement is not computationally intensive and can be done locally itself.

loT Level-2

Local

Cloud

REST/Websocket
REST/WebSocket Lo ke o

Communication
|

performs analysis Cloud Storage

loT Level-3

+ Alevel-3 10T system has a single node. Data is stored and analyzed in the cloud and application is
cloud- based.

+ Level-3 loT systems are suitable for solutions where the data involved is big and the analysis
requirements are computationally intensive.

loT Level-3

Local

Cloud

REST/WebSocket
REST/WebSocket Communication

Monitoring Node

10T Level-4

o A level-4 0T system has multiple nodes that perform local analysis. Data is stored in the cloud and
application is cloud-based.

+ Level-4 contains local and cloud- based observer nodes which can subscribe to and receive
information collected in the cloud from loT devices.

* Level-4 10T systems are suitable for solutions where multiple nodes are required, the data involved
is big and the analysis requirements are computationally intensive.

loT Level-4
Local ; Cloud
|
o » App 3 Observer
S Node
Node AN
REST/WebSocket
Communication
} 4 :
Anolytics
| S e
Ct;mr:ﬂer Coszrmlm 3 REST Services < Component
uAv e 'r.wce (loT Intefligence)

I A

v

|
|
Resource Resource |
A \ | Database €«<——MM——
J |
|
Device Device

Monitoring Nodes
perform local analysi

O 2 Cloud Storage

10T Level-5

+ Alevel-5 loT system has multiple end nodes and one coordinator node.

* The end nodes that perform sensing and/or actuation.

+ Coordinator node collects data from the end nodes and sends to the cloud.
+ Data is stored and analyzed in the cloud and application is cloud-based.

« Level-5 IoT systems are suitable for solutions based on wireless sensor networks, in which the data
involved is big and the analysis requirements are computationally intensive.

11

loT Level-5

Local : Cloud
|
|
[
Observer Observer
€ : App Node
!
)
REST/WebSocket T
Communication l

Coordinator

Routers/End Points y -

Cloud Storage &
Analysis

10T Level-6

+ Alevel-6 10T system has multiple independent end nodes that perform sensing and/or actuation and
send data to the cloud.

+ Data is stored in the cloud and application is cloud-based.
* The analytics component analyzes the data and stores the results in the cloud database.
* The results are visualized with the cloud-based application.

+ The centralized controller is aware of the status of all the end nodes and sends control commands to
the nodes.

loT Level-6
Local ! Cloud
:
1
Observer |] Observer
Node D H ” Nede
REST/WebSocket
Communication
[
R A — . l
Controller Conteolier || o centratieed 3 REST/WebSocket ARCIAIEE
’.¢~ Service 1 Controfler 5¢ 2 (oT b celli)
'
: il 4 T
(=4 | = ==
7 ' Database <
| — =
Device Device :

= >~
Multiple Monitoring Nodes ’ “
. Centralized
Controller Cloud Storage &

Analysis

12

Domain Specific loT

*Home Automation
«Cities
Environment
*Energy

*Retail

*Logistics

* Agriculture
*Industry

Health & Lifestyle

Introduction — Applications of IoT

Smart Lighting

Smart Appliances

Health Care

Wearable Electronics E Health & Llfestyle

Intrusion Detection

Smoke/Gas Detectors

Machine Diagnosis

Smart Parking

Industry

Indoor Air Quality Monitoring |

Smart Roads

Structural Health Monitoring

Cities

Smart Irrigation
Emergency Response

Agriculture

Green House Control |”

Survelllance

Route Scheduling Weather Monitoring

Fleet Tracking Air Pollution Monitoring

Shipment Monitoring Logistics Noise Pollution Monitoring

Environment

Smart Grids
~

Remove Vehicle Diagnostics Forest Fire Detection

Inventory Management

Smart Payments | Renewable Energy System
:

Smart Vending Machines ognostics
- i J | Prognostics

Home Automation

e Smart Lighting

+ Control lighting by remotely (mobile or web applications)

« Smart Appliances

* Provide status information to the users remotely

* Intrusion Detection

+ Use security cameras and sensors (PIR sensors and door sensors)
+ Detect intrusions and raise alerts

* The alerts form: an SMS or an email sent to the user

+ Smoke/Gas Detectors

+ Use optical detection, ionization, or air sampling techniques to detect the smoke
+ Gas detectors can detect harmful gases

+ Carbon monoxide (CO)

* Liquid petroleum gas (LPG)

* Raise alerts to the user or local fire safety department

13

Smart Lighting Smart Appliances Smoke/Fire Detector

e

an)
PO B
SN
3, JE.ANT

Smart Thermostat Intrusion Detection

Cities

« Smart Parking

+ Detect the number of empty parking slots

+ Send the information over the internet and accessed by smartphones

+ Smart Roads

* Provide information on driving conditions, traffic congestions, accidents
« Alert for poor driving conditions

+ Structural Health Monitoring
* Monitor the vibration levels in the structures (bridges and buildings)

+ Advance warning for imminent failure of the structure
* Surveillance

+ Use the large number of distributed and internet connected video surveillance cameras
+ Aggregate the video in cloud-based scalable storage solutions
* Emergency Response

+ Used for critical infrastructure monitoring

+ Detect adverse events

Environment

Weather Monitoring

+ Collect data from several sensors (temperature, humidity, pressure, etc.)

+ Send the data to cloud-based applications and storage back-ends

« Air Pollution Monitoring

* Monitor emission of harmful gases (CO2, CO, NO, NO2 , etc.)

+ Factories and automobiles use gaseous and meteorological sensors

* Integration with a single-chip microcontroller, several air pollution sensors, GPRS-modem, and a
GPS module

14

* Noise Pollution Monitoring
+ Use a number of noise monitoring stations
+ Generate noise maps from data collected
* Forest Fire Detection
+ Use a number of monitoring nodes deployed at different locations in a forests
+ Use temperature, humidity, light levels, etc.
* Provide early warning of potential forest fire
+ Estimates the scale and intensity
* River Floods Detection
« Monitoring the water level (using ultrasonic sensors) and flow rate (using the flow velocity sensors)
+ Raise alerts when rapid increase in water level and flow rate is detected.

Weather Monitoring Air Pollution Monitoring Noise Pollution Monitoring

Forest Fire Detection River Flood Detection

Energy

» Smart Grids
+ Collect data regarding electricity generation, consumption, storage (conversion of energy into other
forms), distribution, equipment health data
« Control the consumption of electricity
* Remotely switch off supply
+ Renewable Energy Systems
* Measure the electrical variables
* Measure how much the power is fed into the grid
* Prognostics
* Predict performance of machines or energy systems
* By collect and analyze the data from sensors.

15

Smart Grid

Renewable Energy Integration Prognostic Health Management

Retail

* Inventory Management

* Monitoring the inventory by the RFID readers

* Tracking the products

« Smart Payments

* Use the NFC

+ Customers store the credit card information in their NFC-enabled
« Smart Vending Machines

+ Allow remote monitoring of inventory levels

+ Elastic pricing of products

+ Contact-less payment using NFC

+ Send the data to the cloud for predictive maintenance

* The information of inventory levels

* The information of the nearest machine in case a product goes out of stock in a machine

16

Inventory Monitoring Smart Shopping Applications

Smart Payment
\

Logistics

+ Route Generation & Scheduling
+ Generate end-to-end routes using combination of route patterns
* Provide route generation queries
« Can be scale up to serve a large transportation network
* Fleet Tracking
* Track the locations of the vehicles in real-time
+ Generate alerts for deviations in planned routes
+ Shipment monitoring
* Monitoring the conditions inside containers
+ Using sensors (temperature, pressure, humidity)
+ Detecting food spoilage
+ Remote Vehicle Diagnostics
+ Detect faults in the vehicle
« Warn of impending faults
+ 10T collects the data on vehicle (speed, engine RPM, coolant temperature)
+ Generate alerts and suggest remedial actions

17

Fleet Tracking

Shipment Monitoring
Remote Vehicle Diagnostics

d o Py
Ay %
Sey 7‘)..‘ ';E;,'#J-:in:_f::é
P S LA Tyl
s DROSE, S 2T Al

e Rt

Agriculture

« Smart Irrigation
+ Use sensors to determine the amount of moisture in the soil
* Release the flow of water
+ Using predefined moisture levels
+ Water Scheduling
+ Green House Control
+ Automatically control the climate logical conditions inside a green house
+ Using several sensors to monitor
+ Using actuation devices to control
+ Valves for releasing water and switches for controlling fans
+ Maintenance of agricultural production

Smart Irrigation

et ‘.‘f"""“-i

Lo Loow \:\-Ay y-

Green House Control

18

Industry

* Machine Diagnosis
+ Sensors in machine monitor the operating conditions
+ For example: temperature & vibration levels
+ Collecting and analyzing massive scale machine sensor data
* For reliability analysis and fault prediction in machines
* Indoor Air Quality Monitoring
+ Use various gas sensors
* To monitor the harmful and toxic gases (CO, NO, NO2, etc.)
« Measure the environmental parameters to determine the indoor air quality
« Temperature, humidity, gaseous pollutants, aerosol

Smart Lighting

Machine Diagnosis Indoor Air Quality Monitoring |

Emergency Services

M2M C ication Prognostic Health Management
VAT (Fire, Gas Leak, Water Leakage detection)

Health & Lifestyle

+ Health & Fitness Monitoring
* Collect the health-care data

+ Using some sensors: body temperature, heart rate, movement (with accelerometers), etc.
* Various forms : belts and wrist-bands

« Wearable electronic

+ Assists the daily activities

« Smart watch

*« Smart shoes

« Smart wristbands

19

UNIT Il

Machine-to-Machine (M2M)

Machine-to-Machine (M2M) refers to networking of machines (or devices) for the purpose of remote
monitoring and control and data exchange.

M2M Area Networks M2M Core Network
- Wired Network
E]) M2M Applicat
j & ication
o M2M Gateway == pplications
pd S/ P ’ =
: Y] P —
fa. | vpw
SN | = - o ® J ”
T4 b . =
e — G
e} e o) e
- al

Wireless Network

Tl
i é é\

Machine-to-Machine (M2M)

o An M2M area network comprises of machines (or M2M nodes) which have embedded hardware
modules for sensing, actuation and communication.

+ Various communication protocols can be used for M2M local area networks such as ZigBee,
Bluetooh, ModBus, M-Bus, Wirless M-Bus, Power Line Communication (PLC), 6LoWPAN, IEEE
802.15.4, etc.

+ The communication network provides connectivity to remote M2M area networks.
+ The communication network can use either wired or wireless networks (IP- based).

+ While the M2M area networks use either proprietary or non-IP based communication protocols, the
communication network uses IP-based networks.

M2M gateway

e Since non-IP based protocols are used within M2M area networks, the M2M nodes within one
network cannot communicate with nodes in an external network.

® To enable the communication between remote M2M area networks, M2M gateways are used

M2M Gateway
Virtual Node

Proxy

Protocol Translation
. IP Routing
Virtual Node

M2 Node £ = Native Protocol —

20

Difference between loT and M2M

Communication Protocols
« M2M and IoT can differ in how the communication between the machines or devices happens.

+ M2M uses either proprietary or non-IP based communication protocols for communication within
the M2M area networks.

 Machines in M2M vs Things in loT

« The "Things" in 10T refers to physical objects that have unique identifiers and can sense and
communicate with their external environment (and user applications) or their internal physical states.

« M2M systems, in contrast to 10T, typically have homogeneous machine types within an M2M area
network.

Difference between IoT and M2M
Hardware vs Software Emphasis

* While the emphasis of M2M is more on hardware with embedded modules, the emphasis of IoT is
more on software.

+ Data Collection & Analysis

+ M2M data is collected in point solutions and often in on-premises storage infrastructure.
* In contrast to M2M, the data in 10T is collected in the cloud (can be public, private or hybrid cloud).
* Applications

+ M2M data is collected in point solutions and can be accessed by on-premises applications such as
diagnosis applications, service management applications, and on- premisis enterprise applications.

« 10T data is collected in the cloud and can be accessed by cloud applications such as analytics
applications, enterprise applications, remote diagnosis and management applications, etc..

Communication in 10T vs M2M

" Application Layer Application Layer ‘
]
i HTTP CoAP WebSockets HTTP CoAP WebSockats i
' £ \ L
' / 1—
] MQTT XMPP DDS AMQP R MQTT XMPP DDS AMQP .
; ¢ 10T > i
\)
' ‘».\ - / N
- Transport Layer] } Transport Layer !
' '
\ Tcp upP TCP uDP !
‘\., rl
SIS IS IS PSS PSPPI ISP I I s sl o,
P Network Layer Network Layer \
!]
: IPv4 IPV6 6LOWPAN 1Pv4 IPV6 6LOWPAN '
']
i | ;
" Link Layer M2M ! Link Layer i
' : : : '
' | 802.3-Ethernet | 802.16-WiMax | 2G/3G/LTE - {primarily point:to point) 802.3 - Ethernet | 802.16-WiMax || 2G/3G/LTE— || |
' Cellular N Cellular '
' | 802.11-WiFi | 802.15.4 - LR-WPAN 802.11- WiFi | 802.15.4 - LR-WPAN !

21

SDN

+ Software-Defined Networking (SDN) is a networking architecture that separates the control plane
from the data plane and centralizes the network controller.

+ Software-based SDN controllers maintain a unified view of the network and make confi guration,
management and provisioning simpler.

« The underlying infrastructure in SDN uses simple packet forwarding hardware as opposed to
specialized hardware in conventional networks.

Applications Layer

Network Network Network Network
Application Application Application Application

| |
|
: Northbound Open API
| Control Layer . 0o
Network Operating System

Southbound Open API (OpenFlow)

Infrastructure Layer

[Simple Packet Forwarding :
] Hardware |

Hardware Hardware

Simple Packet Forwarding ‘ Simple Packet Forwarding

] Simple Packet Forwarding

I Hardware

Key elements of SDN

o Centralized Network Controller

« With decoupled control and data planes and centralized network controller, the network
administrators can rapidly configure the network.
* Programmable Open APIs
+ SDN architecture supports programmable open APIs for interface between the SDN application and
control layers (Northbound interface).
+ Standard Communication Interface (OpenFlow)
+ SDN architecture uses a standard communication interface between the control and infrastructure
layers (Southbound interface).

+ OpenFlow, which is defined by the Open Networking Foundation (ONF) is the broadly accepted
SDN protocol for the Southbound interface.

22

NFV

+ Network Function Virtualization (NFV) is a technology that leverages virtualization to consolidate
the heterogeneous network devices onto industry standard high volume servers, switches and storage.

* NFV is complementary to SDN as NFV can provide the infrastructure on which SDN can run.

Virtual Network Functions

‘ NFV
NFV Infrastructure Management
Virtual Virtual Virtual &
Compute Network Storage Orchestration

Virtualization Layer

Compute Network Storage

Key elements of NFV
Virtualized Network Function (VNF):

* VNF is a software implementation of a network function which is capable of running over the NFV
Infrastructure (NFVI).

* NFV Infrastructure (NFVI):
* NFVI includes compute, network and storage resources that are virtualized.
* NFV Management and Orchestration:

« NFV Management and Orchestration focuses on all virtualization-specific management tasks and
covers the orchestration and life-cycle management of physical and/or software resources that support
the infrastructure virtualization, and the life-cycle management of VNFS.

NFV Use Case

NFV can be used to virtualize the Home Gateway. The NFV infrastructure in the cloud hosts a
virtualized Home Gateway.

The virtualized gateway provides private IP addresses to the devices in the home. The virtualized
gateway also connects to network services such as VolP and IPTV.

Home Network ! Public Network

Internet

Wireless i
u Access Point 1
ptops Jff“\g : | (Layer-2 Device Virtualized Home Gateway S 1PTV
- ' -

[T |
\‘ | NFV Infrastructure

2 i >
- Ly ! ~ VolP
- |
- i
Sema er Smart Refrigerator |

23

loT System Management

* Need for loT Systems Management
* SNMP

* YANG

e NETOPEER

Need for 10T Systems Management

+ Automating Configuration

+ Monitoring Operational & Statistical Data
* Improved Reliability

+ System Wide Configurations

 Multiple System Configurations

* Retrieving & Reusing Configurations

Simple Network Management Protocol (SNMP)

* SNMP is a well-known and widely used network management protocol that allows monitoring and
configuring network devices such as routers, switches, servers, printers, etc.

Managed I Device

SNMVMIP Agent

Management
Information Base
(nvs)

* SNMP component include

+ Network Management Station (NMS)
+ Managed Device
« Management Information Base (MIB)

« SNMP Agent that runs on the device

Limitations of SNMP

« SNMP is stateless in nature and each SNMP request contains all the information to process the
request. The application needs to be intelligent to manage the device.

« SNMP is a connectionless protocol which uses UDP as the transport protocol, making it unreliable
as there was no support for acknowledgement of requests.

+ MIBs often lack writable objects without which device configuration is not possible using SNMP.
« It is difficult to differentiate between configuration and state data in MIBs.
+ Retrieving the current configuration from a device can be difficult with SNMP.

« Earlier versions of SNMP did not have strong security features.

24

YANG

YET ANOTHER NEXT GENERATION data send over the network management protocols
such as NETCONF and RESTCONF.
* YANG is a data modeling language used to model configuration and state data manipulated by the
NETCONF protocol.
« YANG modules contain the definitions of the configuration data, state data, RPC calls that
can be issued and the format of the notifications.
* YANG modules defines the data exchanged between the NETCONF client and server.
* A module comprises of a number of 'leaf' nodes which are organized into a hierarchical tree
structure.
* The 'leaf' nodes are specified using the 'leaf' or 'leaf-list' constructs.
* Leaf nodes are organized using ‘container' or 'list' constructs.
* AYANG module can import definitions from other modules.
+ Constraints can be defined on the data nodes, e.g. allowed values.
* YANG can model both configuration data and state data using the 'config' statement.

YANG Module Example
This YANG module is a YANG version of the toaster MIB
* The toaster YANG module begins with the header information followed by identity declarations
which define various bread types.
* The leaf nodes (‘toasterManufacturer’ , ‘toasterModelNumber’ and oasterStatus’) are defined in the
‘toaster’ container.
+ Each leaf node definition has a type and optionally a description and default value.
* The module has two RPC definitions (‘make-toast’ and ‘cancel-toast”).

NETCONF

« NETCONF works on SSH transport protocol.

* Transport layer provides end-to-end connectivity and ensure reliable deliveryof messages.

« NETCONF uses XML-encoded Remote Procedure Calls (RPCs) for framing request andresponse
messages.

+ The RPC layer provides mechanism for encoding of RPC calls and notifications.

« NETCONF provides various operations to retrieve and edit configuration datafromnetwork devices.

NETOPEER

» Netopeer is a set of NETCONF tools built on the libnetconf library.

> It allows operators to connect to their NETCONF-enabled devices as well as developers to
allow control their devices via NETCONF.

» With the experiences from Netopeer, we have moved our activities to work on next
generation of this NETCONF toolset based on libyang library.

» Netopeer is mature enough to be used as a replacement of the original Netopeer tools.
Therefore, the Netopeer is no more developed neither maintained.

—_—
‘ Accepted [—TLs configuration
o] o alf| - — (" data storage ™)

Netopeer-GUI —— / network <Listen thread | Data thread | RPC thread
= W—J\ Listening libnetconf| |&

sockets

étra nsAPI
W module 2

25

https://github.com/CESNET/libnetconf
https://github.com/CESNET/libyang

UNIT HI

10T Design Methodology that includes:

* Purpose & Requirements Specification
* Process Specification
« Domain Model Specification

+ Information Model Specification
* Service Specifications

* 10T Level Specification

+ Functional View Specification

* Operational View Specification

* Device & Component Integration

+ Application Development

loT Design Methodology - Steps

Define the use cases

Define Physil Entities, Virtual Entities, Devices, Resources n‘d Services in the loT system

Define tt ~sttucture(e@grelaﬂons;.att-ﬂbutes)nf“authein rmation in the loT system

Map Process and Information Model to services and define service speciﬂcaﬁons

—

Define the loT level for the system

velto functional roups

—

Define communication options, service hosting options, storage options, device options

Integrate devices, develop and integrate the components

op Applications

Step 1: Purpose & Requirements Specification

+ The first step in 10T system design methodology is to define the purpose and requirements of the
system. In this step, the system purpose, behavior and requirements (such as data collection
requirements, data analysis requirements, system management requirements, data privacy and security
requirements, user interface requirements, ...) are captured.

Applying this to our example of a smart home automation system, the purpose and requirements for
the system may be described as follows:

* Purpose : A home automation system that allows controlling of the lights in a home remotely using a
web application.

* Behavior : The home automation system should have auto and manual modes. In auto mode, the
system measures the light level in the room and switches on the light when it gets dark. In manual mode,
the system provides the option of manually and remotely switching on/off the light.

+ System Management Requirement : The system should provide remote monitoring and control
functions.

+ Data Analysis Requirement : The system should perform local analysis of the data.» Application
Deployment Requirement : The application should be deployed locally on the device, but should be
accessible remotely.

+ Security Requirement : The system should have basic user authentication capability.
Step2: Process Specification

* The second step in the 10T design methodology is to define the process specification. In this step, the
use cases of the loT system are formally described based on and derived from the purpose and
requirement specifications.

Mode

auto manual

NS

|
7

Light-Level Light-State

Level: Low / Level: Hig state: On //\\ state: Off
¢ B gy S
.

state: On state: Off state: On state: Off

27

Step 3: Domain Model Specification

* The third step in the 10T design methodology is to define the Domain Model. The domain model
describes the main concepts, entities and objects in the domain of 10T system to be designed. Domain
model defines the attributes of the objects and relationships between objects. Domain model provides
an abstract representation of the concepts, objects and entities in the 0T domain, independent of any
specific technology or platform. With the domain model, the 0T system designers can get an
understanding of the 10T domain for which the system is to be designed.

User interocts with
Active Digital Human User
Artefact
App
44
| |
/ A PSS
invokes/subscribes \ Virtual Entity refates to Physical Entity
‘ 5 - monitors
assodoted | with | Room Room
|
Serwce |
— |
e
|
ol with |
associoted|with — — — a0 Entity relotes to Physicol Entity
e ——— —_— «<——
exposes Appliance Appliarce S
! octs on
Resource assodated with
< £ = |
hosts ¥ Device
+
4 ‘ [Minicomputer
Network OnDevice attached to 1\ ottoched to
I
Resource Resource |
Sensor Actuator
LOR Relay
—lp One -way Association
Type Type: Entity, service, resource,
: Generalization/Specialization

device, attribute
—— Aggregation Relationship

Step 4: Information Model Specification

+ The fourth step in the 10T design methodology is to define the Information Model. Information Model
defines the structure of all the information in the 10T system, for example, attributes of Virtual Entities,
relations, etc. Information model does not describe the specifics of how the information is represented
or stored. To define the information model, we first list the Virtual Entities defined in the Domain
Model. Information model adds more details to the Virtual Entities by defining their attributes and
relations.

= = Virtual Entity:
VirtualEntity: | = LightAppliance
Room =
e < Entitytype : Appiance
1D : Room1 =L
T RoomiD: Room1
Attribute: Attribute:
Light-Level State
AttributeName - lightLevel AttributeName - lightState
AttributeType : level AttributeType : state
has light-level e . ==
L —_has light-level isin state __— __ isin state
Level: High Level: Low State: On State: Off

28

Step 5: Service Specifications

« The fifth step in the loT design methodology is to define the service specifications.

Service

specifications define the services in the 10T system, service types, service inputs/output, service
endpoints, service schedules, service preconditions and service effects.
Process Specification
[‘ﬁ -\'l
ML, .+, Mode Service: Sets mode to auto or
’J," manual or retrieves the current mode
outo 7N\ C manwal
H | \
*: Light - Level : Ught-Seate ?' B
Level: Low /" Level: High state: On state: Off
1 | State Service: Sets the light
state: On stote: Off stote:On state: Off c " appliance state to on/off or
X retrieves the current light state
i Information Model '
3 Virtoot Entity: “ inroom
L [rereeppe
1 am |
Attribute: :
< Light-Level :
| Nt E obap seng ;
has A,,,,",,/.. '/\': P S ,V’d-*\-j;i‘m
Level: High Level: Low stote: On stote: OF
Controller Service: In auto mode, the controller service monitors the light level
and switches the light on/off and updates the status in the status database.
In manual mode, the controller service, retrieves the current state from the
database and switches the light on/off
Schedule
Input Output
Mode: Auto/Manual | ——_ Current Mode: TN hos Ouigut
State: On/Off "\""’ opu¥ = Auto/Manual \
\\\ ,/// \\
Service SepEs |
g : Mode
e e
S
o T~ has Service Endpoint
has Output _—" has '"p"'// J \\\\\
= . Endpoint
Output o Input
il Set Mode: Endpoint: /home/mode/
State: On/Off Auto/Manual Protocol: HTTP
Output
Statx o/ TS_hos Output
s
Nome: Stote
rype:nfsr
g AR e \hafsemctfnmm
o Z = Endpoint
Input .5
T Eropoet e/t B2 A

29

Step 6: 10T Level Specification

*The sixth step in the 10T design methodology is to define the 10T level for the system. In Chapter-1,
we defined five 10T deployment levels.

Cloud

Local

REST
Communication

Database

e

Resource

¢

Device

Monitoring Node
performs analysis, stores data

Step 7: Functional View Specification

+ The seventh step in the 10T design methodology is to define the Functional View. The Functional
View (FV) defines the functions of the 10T systems grouped into various Functional Groups (FGS).
Each Functional Group either provides functionalities for interacting with instances of concepts defined
in the Domain Model or provides information related to these concepts.

Local

1. 10T device maps 10 the Dewice FG (sensors, 2. Resources map to the Device G (on-device 3, Controller service maps to the
actuators devices, com puting devices) resource) and Communication FG Services FG (native service). Web Services
and the Management FG (device manage ment) {communication APls and protocols) mapto Servces FG (web services)

4, Web Servies mapto 5. Database maps to the Manageme nt FG 6. Application maps tothe Application FG (web

Services IG (web services) {database management) and Security FG application, apphcation and database servers),
{database secunty) Management FG (app management) and
Security FG (app secunty)

30

Step 8: Operational View Specification

+ The eighth step in the 10T design methodology is to define the Operational View Specifications. In
this step, various options pertaining to the 10T system deployment and operation are defined, such as,
service hosting options, storage options, device options, application hosting options, etc.

Native Service: Controller Service Application Web App: Django Web App
Web Services: Mode REST Service, - +- — —» Application Server: Django App Server
State REST Service = s usmiaioaticl Srnae Database Server: MySQL
\
Services
Application Management: ‘ ’mnm&ﬂmwmkumhhu
Django App Management Agplcation Native Services Web Services ;7 Authorzation: Web App, Database
Martag mnent
Database Management: - sy
MySQLDB Management Mane ganent Communication APls: REST APls
Communication Protocols:
Device Management: Device — — _p Unk Layer. 802.11
Raspberry Pl device Management Management Network Layer: IPvd/IPv6
Transport: TCP

Application: HTTP
Computing Device: Raspberry Pi

s e - , :
Actuator: Relay Switch

Step 9: Device & Component Integration

+ The ninth step in the 10T design methodology is the integration of the devices and component.

e

.
.
.
.
- .
B . .
3 . . .
- - .
ceee . ..
.. tesee . ..
.e DR . .o
e cesen .e
“e ssses L ——
.n cssne csane .
LR CER R
.e DR CER N e
.e DR cenee ..
e LR LR .o
. DR
. sssss .e ..
tesen .
.. sesen .. .
.. . ..
e ..
«» . "
.o -
.
o . ..
- ..
.. . .
.. . ..
. " se
.
e . e
“n . e
.
.. v ..
.. “ s
-
.o . ..
o v e
. o =
. “ .n
..
. ' .
e . .
.e - “e
.e - .a
.w . .
.
-

31

Step 10: Application Development
* The final step in the 10T design methodology is to develop the 10T applications.
+ Auto
Controls the light appliance automatically based on the lighting conditions in the room
+ Light
When Auto mode is off, it is used for manually controlling the light appliance.

When Auto mode is on, it reflects the current state of the light appliance.

32

Unit-1V

* Introduction to Python
+ Installing Python
+ Python Data Types & Data Structures
+ Control Flow
* Functions
* Modules
+ Packages
* File Input/Output
+ Date/Time Operations
+ Classess

Python
Python is a general-purpose high level programming language and suitable for providing a solid
foundation to the reader in the area of cloud computing.

The main characteristics of Python are:
1. Multi-paradigm programming language

Python supports more than one programming paradigms including object-oriented programming
and structured programming

2. Interpreted Language

Python is an interpreted language and does not require an explicit compilation step. The Python
interpreter executes the program source code directly, statement by statement, as a processor or scripting
engine does.

3. Interactive Language

Python provides an interactive mode in which the user can submit commands at the Python prompt
and interact with the interpreter directly.

Python — Benefits
1. Easy-to-learn, read and maintain

Python is a minimalistic language with relatively few keywords, uses English keywords and has
fewer syntactical constructions as compared to other languages.

Reading Python programs feels like English with pseudo-code like constructs. Python is easy to learn
yet an extremely powerful language for a wide range of applications.

2. Object and Procedure Oriented
Python supports both procedure-oriented programming and object-oriented programming.

Procedure oriented paradigm allows programs to be written around procedures or functions that allow
reuse of code. Procedure oriented paradigm allows programs to be written around objects that include
both data and functionality.

33

3.Extendable

Python is an extendable language and allows integration of low-level modules written in languages
such as C/C++. This is useful when you want to speed up a critical portion of a program.

4 Scalable
+ Due to the minimalistic nature of Python, it provides a manageable structure for large programs.
5.Portable

Python is an interpreted language, programmers do not have to worry about compilation, linking
and loading of programs. Python programs can be directly executed from source.

6. Broad Library Support

Python has a broad library support and works on various platforms such as Windows, Linux, Mac,
etc.

Python — Setup
Windows
» Python binaries for Windows can be downloaded from http://www.python.org/getit .

» For the examples and exercise in this book, you would require Python 2.7 which can be
directly downloaded from: http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi

« Once the python binary is installed you can run the python shell at the command prompt
using > python.

Linux

#Install Dependencies
sudo apt-get install build-essential
sudo apt-get install libreadline-gplv2-dev libncurseswb-dev libssl-dev libsqlite3-dev tk-dev libgdom-
dev libc6-dev libbz2-dev
#Download Python
waget http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz

tar -xvf Python-2.7.5.tgz

cd Python-2.7.5

#Install Python

Jconfigure make sudo make install

Numbers

Number data type is used to store numeric values. Numbers are immutable data types, therefore
changing the value of a number data type results in a newly allocated object.

Example

#Integer
>>>3=5
>>>type(a)
#Floating Point
>>>p=2.5
>>>type(b)

34

http://www.python.org/getit
http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi
http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz

#Long
>>>x=9898878787676L
>>>type(x)

#Complex >>>y=2+5j
>>>y

(2+5))

>>>type(y)

<type ‘complex’>

>>>y real

2 >>>y.imag 5

Example 2

#Addition
>>>c=a+b
>>>C

7.5 >>>type(c)
#Subtraction
>>>0=a-b
>>>(

2.5 >>>type(d)
type<’float™
#Multiplication
>>>e=a*h
>>>e 12.5
>>>type(e)
type<’float’>

Strings
A string is simply a list of characters in order. There are no limits to the num number.

Example

#Create string

>>>s="Hello World!"
>>>type(s)
#String concatenation
>>>t="This is sample program."
>>>r = 5+t

>>>r

"Hello World!This is sample program.’
#Get length of string

>>>len(s)

12

#Convert string to integer
>>>x="100"

>>>type(s)

<type ‘str’>

>>>y=int(x)

>>>y

100

35

Lists

List a compound data type used to group together other values. List items need not all have the same
type. A list contains items separated by commas and enclosed within square brackets.

Tuples

A tuple is a sequence data type that is similar to the list. A tuple consists of a number of values
separated by commas and enclosed within parentheses. Unlike lists, the elements of tuples cannot be
changed.

#Create a Tuple
>>>fruits=("apple"”,"mango”,"banana”, "pineapple™)
>>>fruits

(’apple’, ’'mango’, banana’, ’pineapple’)
>>>type(fruits)

#Get length of tuple

>>>len(fruits)

4

Dictionaries

Dictionary is a mapping data type or a kind of hash table that maps keys to values. Keys in a dictionary
can be of any data type, though numbers and strings are commonly used for keys. Values in a dictionary
can be any data type or object.

Example

#Create a dictionary
>>>student={"name’:’Mary’,’id’:’8776’,’major’:’CS’}
>>>student

{’major’: ’CS’, *name’: "Mary’, ’id’: 8776’}
>>>type(student)

<type ‘dict’>
#Get length of a dictionary

>>>|en(student)

3
#Get the value of a key in dictionary

>>>student['name’]

"Mary’

#Get all items in a dictionary

>>>student.items()

[(gender’, *female’), Cmajor’, ’CS’), ("name’, ’Mary’),
(id’, ’8776”)
Type Conversions

Examples

#Convert to string
>>>3=10000
>>>str(a)
>10000°
#Convert to int
>>>ph="2013"
>>>int(b)
2013

36

#Convert to float
>>>float(b)
2013.0
Control Flow — if statement
* The if statement in Python is similar to the if statement in other languages.
>>>3 = 25**5
>>>jf a>10000:
print "More"
else:
print "Less"
if a>10000:
if a<1000000:
print”’Between 10k and 100k”
else:
print”More than 100k”

Control Flow — for statement
The for statement in Python iterates over items of any sequence (list, string, etc.) in the order in
which they appear in the sequence.

This behavior is different from the for statement in other languages such as C in which an
initialization, incrementing and stopping criteria are provided.

Example

#Looping over characters in a string
helloString = "Hello World"
for ¢ in helloString:
print c.
Control Flow — while statements
The while statement in Python executes the statements within the while loop as long as the while
condition is true.

Example

#Prints even numbers upto 100
>>>(=0

>>> while i<=100:

ifi%2 ==0:

print i

i=it+l

Control Flow — range statement
Example

#Generate a list of numbers from0 —9
>>>range (10)

[0,1,23,4,56,789]

Control Flow — break/continue Statement
The break and continue statements in Python are similar to the statements in C.

37

Break

Break statement breaks out of the for/while loop.
Example
#Break statement example
>>>y=1
>>>for X in range(4,256,4):
y=y*x
ify>512:
break
printy
4
32
384

Continue

« Continue statement continues with the next iteration.
#Continue statement example
>>>fruits=[apple’,’orange’,’banana’,’mango’]
>>>for item in fruits:

if item == "banana":
continue

else:

print item
apple
orange

mango

Control Flow — pass statement
The pass statement in Python is a null operation.
The pass statement is used when a statement is required syntactically but you do not want any

command or code to execute.

Example

>fruits=[apple’,”orange’, ’banana’,’mango’]

>for item in fruits: if item == "banana":

Pass

else:

print item

apple

orange

mango

Functions - Default Argument
Functions can have default values of the parameters.

If a function with default values is called with fewer parameters or without any parameter, the default
values of the parameters are used.

>>>def displayFruits(fruits=["apple’,’orange’]):
print "There are %d fruits in the list" % (len(fruits))
for item in fruits:

print item

38

#Using default arguments
>>>displayFruits()

apple

orange

>>>fruits = [’banana’, "pear’, 'mango’]
>>>displayFruits(fruits)

banana

pear

mango

Functions - Passing by Reference

All parameters in the Python functions are passed by reference.

If a parameter is changed within a function the change also reflected back in the calling fuction.
>>>def displayFruits(fruits):
print "There are %d fruits in the list" % (len(fruits))
for item in fruits:
print item

print "Adding one more fruit"

fruits.append('mango’)
>>>fruits = ['banana’, 'pear’, 'apple’]

>>>displayFruits(fruits)
There are 3 fruits in the list
Banana

Pear

Apple

#Adding one more fruit

>>>print "There are %d fruits in the list" % (len(fruits))

There are 4 fruits in the list

Functions - Keyword Arguments
Functions can also be called using keyword arguments that identifies the arguments by the
parameter name when the function is called.
#Correct use
>>>printStudentRecords(name="Alex”)
Name: Alex
Age: 20
Major: CS
>>>printStudentRecords(name="Bob’,age=22,major="EC E’)
Name: Bob
Age: 22
Maijor: ECE
>>>printStudentRecords(name="Alan’,major="ECE’)
Name: Alan
Age: 20
Major: EC

39

Functions - Variable Length Arguments

Python functions can have variable length arguments. The variable length arguments are passed to as
a tuple to the function with an argument prefixed with asterix (*)
Example

>>>def student(name, *varargs):

print "Student Name: " + name

for item in varargs:

print item

>>>student(’Nav’)

Student Name: Nav

>>>student(’ Amy’, *Age: 24”)

Student Name: Amy

Age: 24

>>>student(’Bob’, *Age: 20°, "Major: CS’)

Student Name: Bob

Age: 20

Major: C

Modules

Python allows organizing the program code into different modules which improves the code
readability and management.

» A module is a Python file that defines some functionality in the form of functions or classes.
Modules can be imported using the import keyword.

» Modules to be imported must be present in the search path.

Example
#student module - saved as student.py
def averageGrade(students):
sum=0.0
for key in students:
sum = sum + students[key]['grade']
average = sum/len(students)
return average
def printRecords(students):
print "There are %d students" %(len(students))
i=1
for key in students:
print "Student-%d: " % (i)
print "Name: " + students[key]['name’]
print "Grade: " + str(students[key]['grade'])
i=i+l
Packages
Python package is hierarchical file structure that consists of modules and subpackages.
Packages allow better organization of modules related to a single application environment.

File Handling

Python allows reading and writing to files using the file object.

* The open(filename, mode) function is used to get a file object.

» The mode can be read (r), write (w), append (a), read and write (r+ or w+), read-binary (rb), write-
binary (wb), etc.

» After the file contents have been read the close function is called which closes the file object.

40

Example

Example of reading a certain number of bytes
>>>fp = open(‘file.txt','r")

>>>fp.read(10)

'Python sup' >>>fp.close()

Date/Time Operation

Python provides several functions for date and time access and conversions.
* The datetime module allows manipulating date and time in several ways.
* The time module in Python provides various time-related functions.
Example
Examples of manipulating with date

>>>from datetime import date

>>>now = date.today()

>>>print "Date: " + now.strftime("%m-%d-%y")

Date: 07-24-13

>>>print "Day of Week: " + now.strftime("%A")

Day of Week: Wednesday

>>>print "Month: * + now.strftime("%B")

Month: July

>>>then = date(2013, 6, 7)

>>>timediff = now — then

>>>timediff.days
47

Classes
Python is an Object-Oriented Programming (OOP) language. Python provides all the standard features
of Object Oriented Programming such as classes, class variables, class methods, inheritance, function
overloading, and operator overloading.
* Class
A class is simply a representation of a type of object and user-defined prototype for an object

that is composed of three things: a name, attributes, and operations/methods.
* Instance/Object

Obiject is an instance of the data structure defined by a class.
* Inheritance

Inheritance is the process of forming a new class from an existing class or base class.
* Function overloading

Function overloading is a form of polymorphism that allows a function to have different
meanings, depending on its context.
» Operator overloading

Operator overloading is a form of polymorphism that allows assignment of more than one
function to a particular operator.

loT physical devices and End points

« Basic building blocks of an IoT Device
» Exemplary Device: Raspberry Pi

* Raspberry Pi interfaces

 Programming Raspberry Pi with Python
* Other 10T devices

41

What is an 10T Device

A "Thing" in Internet of Things (10T) can be any object that has a unique identifier and which can
send/receive data (including user data) over a network (e.g., smart phone, smart TV, computer,
refrigerator, car, etc.).

0T devices are connected to the Internet and send information about themselves or about their
surroundings (e.g. information sensed by the connected sensors) over a network (to other devices or
servers/storage) or allow actuation upon the physical entities/environment around them remotely.

10T Device Examples

A home automation device that allows remotely monitoring the status of appliances and controlling
the appliances.

An industrial machine which sends information abouts its operation and health monitoring data to a
server.

A car which sends information about its location to a cloud-based service.

A wireless-enabled wearable device that measures data about a person such as the number of steps
walked and sends the data to a cloud-based services.

1.Basic building blocks of an 10T Device
* Sensing

Sensors can be either on-board the 0T device or attached to the device.
* Actuation

10T devices can have various types of actuators attached that allow taking actions upon the
physical entities in the vicinity of the device.

« Communication

Communication modules are responsible for sending collected data to other devices or cloud- based
servers/storage and receiving data from other devices and commands from remote applications.

* Analysis & Processing

Analysis and processing modules are responsible for making sense of the collected data.

42

Connectivity Processor Graphics Audio/Video
USB Host CPU GPU HDMI
RJ45/Ethernet 3.5mm audio
RCA video

Interfaces Storage Interfaces = Memory Interfaces

UART SD NAND/NOR

SPI MMC DDR1/DDR2/DDR3

12C SDIO

CAN

Raspberry Pi

« Raspberry Pi is a low-cost mini-computer with the physical size of a credit card.
« Raspberry Pi runs various flavors of Linux and can perform almost all tasks that a normal desktop
computer can do.

* Raspberry Pi also allows interfacing sensors and actuators through the general purpose I/O pins.

« Since Raspberry Pi runs Linux operating system, it supports Python "out of box”

RCA Video
l Audio Jack

GPIO Headers
‘ Status LEDs

DSI Connector
Display

SD Card
Slot

Micro USB +——————— Ethernet

Power

CSI Connector
Camera

43

Linux on Raspberry Pi
* Raspbian
Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi.
* Arch
Arch is an Arch Linux port for AMD devices.
* Pidora
Pidora Linux is a Fedora Linux optimized for Raspberry Pi.
* RaspBMC
RaspBMC is an XBMC media-center distribution for Raspberry Pi.

* OpenELEC

OpenELEC is a fast and user-friendly XBMC media-center distribution. « RISC OS « RISC

OS is a very fast and compact operating systems.

— avs] © | sv
GPIO 2 (12C SDA) O ©| sv
crios(2cson) | @ €© | srounp
: criozs | @ © | PO 14 (UART TxD)
> - crounD | @ © | GPIO 15 (UART RxD)
cric17 | © © | crioas
e crio27 | @ © | srouno
g = = GPIO 22 o O GPIO 23
3va | © © | srio24
3 " - Gric10(sPlomos) | @ @ | Ground
B crios(spiomiso) | @ © | sriozs
= —~ Gric11(sPIoscik) | @ @ | criossPioceon)
crounD | @ © | srio7(sPloceE1LN)
vV

Raspberry Pi Interfaces

« Serial

The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for

communication with serial peripherals.

* SPI

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating

with one or more peripheral devices.

*12C

The 12C interface pins on Raspberry Pi allow you to connect hardware modules. 12C interface

allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line).

44

UNIT V

* WAMP — Auto Bahn for loT

* Python for Amazon Web Services

« Python for MapReduce

* Python Packages of Interest

* Python Web Application Framework — Django
* Development with Django.

WAMP for loT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket which provides
publish-subscribe and remote procedure call (RPC) messaging patterns.

Roles

Publisher

Subscriber

Caller

Callee

WAMP — Concepts
* Transport:
Transport is channel that connects two peers.
* Session:
Session is a conversation between two peers that runs over a transport.
* Client:

Clients are peers that can have one or more roles. In publish-subscribe model client can have
following roles:

Publisher:
Publisher publishes events (including payload) to the topic maintained by the Broker.
Subscriber:

Subscriber subscribes to the topics and receives the events including the payload.

45

In RPC model client can have following roles:
Caller: Caller issues calls to the remote procedures along with call arguments.

Callee: Callee executes the procedures to which the calls are issued by the caller and returns the
results back to the caller.

* Router: Routers are peers that perform generic call and event routing. In publish-subscribe model
Router has the role of a Broker:

Broker: Broker acts as a router and routes messages published to a topic to all subscribers subscribed
to the topic.

In RPC model Router has the role of a Broker: —

Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes results from
Callee to Caller.

» Application Code: Application code runs on the Clients.
Amazon EC2 - Python Example
» AutoScaling Service

« A connection to AutoScaling service is first established by calling
boto.ec2.autoscale.connect_to_region function.

» Launch Configuration

» After connecting to AutoScaling service, a new launch configuration is created by calling
conn.create_launch_con f iguration.

Launch configuration contains instructions on how to launch new instances including the AMI-ID,
instance type, security groups, etc.

» AutoScaling Group

After creating a launch configuration, it is then associated with a new AutoScaling group.
AutoScaling group is created by calling conn.create_auto_scaling_group.

The settings for AutoScaling group such as the maximum and minimum number of instances in the
group, the launch configuration, availability zones, optional load balancer to use with the group.

Example:

#Python program for creating an AutoScaling group (code excerpt)
import boto.ec2.autoscale

print "Connecting to Autoscaling Service"

conn = boto.ec2.autoscale.connect_to_region(REGION,
aws_access_key id=ACCESS KEY,
aws_secret_access_key=SECRET_KEY)

print "Creating launch configuration"

Ic = LaunchConfiguration(name="My-Launch-Config-2,
image_id=AMI_ID,

key name=EC2_KEY_ HANDLE,
instance_type=INSTANCE_TYPE,
security_groups = [SECGROUP_HANDLE,])

46

conn.create_launch_configuration(lc)

print "Creating auto-scaling group”

ag = AutoScalingGroup(group_name="My-Group',
availability_zones=['us-east-1b],

launch_config=Ic, min_size=1, max_size=2,
connection=conn) conn.create_auto_scaling_group(ag)

Amazon AutoScaling — Python Ex

* AutoScaling Policies

« After creating an AutoScaling group, the policies for scaling up and scaling down are defined.

« In this example, a scale up policy with adjustment type ChangelnCapacity and scaling_ad justment
= 1 is defined.

« Similarly a scale down policy with adjustment type ChangelnCapacity and scaling_ad justment = -1
is defined.

Example:
#Creating auto-scaling policies

scale_up_policy = ScalingPolicy(name='scale_up',
adjustment_type="ChangelnCapacity’,
as_name="My-Group’,

scaling_adjustment=1,

cooldown=180)

scale_down_policy = ScalingPolicy(name='scale_down’,
adjustment_type="ChangelnCapacity’,
as_name="My-Group’,

scaling_adjustment=-1,

cooldown=180) conn.create_scaling_policy(scale_up_policy)
conn.create_scaling_policy(scale_down_policy)

Amazon AutoScaling — Python Exa

» CloudWatch Alarms

« With the scaling policies defined, the next step is to create Amazon CloudWatch alarms that trigger
these policies.

» The scale up alarm is defined using the CPUUtilization metric with the Average statistic and
threshold greater 70% for a period of 60 sec.

The scale up policy created previously is associated with this alarm. This alarm is triggered when the
average CPU utilization of the instances in the group becomes greater than 70% for more than 60
seconds.

 The scale down alarm is defined in a similar manner with a threshold less than 50%.

#Connecting to CloudWatch

cloudwatch = boto.ec2.cloudwatch.connect_to_region(REGION,

aws_access_key id=ACCESS KEY,

aws_secret_access_key=SECRET_KEY)

alarm_dimensions = {"AutoScalingGroupName": ‘My-Group'}

#Creating scale-up alarm

scale_up_alarm = MetricAlarm(name='scale_up_on_cpu', namespace="AWS/EC2',
metric="CPUUtilization', statistic="Average',

comparison=">', threshold='70',

47

period="60', evaluation_periods=2,
alarm_actions=[scale_up_policy.policy_arn],
dimensions=alarm_dimensions)
cloudwatch.create_alarm(scale_up_alarm)
#Creating scale-down alarm
scale_down_alarm = MetricAlarm(name='scale_down_on_cpu', namespace="AWS/EC2,
metric="CPUUtilization', statistic="Average',
comparison='<', threshold="'40',

period='60', evaluation_periods=2,
alarm_actions=[scale_down_policy.policy_arn],
dimensions=alarm_dimensions)
cloudwatch.create_alarm(scale_down_alarm)

Amazon S3 — Python

« In this example, a connection to S3 service is first established by calling boto.connect_s3 function. ¢
The upload_to_s3_bucket_path function uploads the file to the S3 bucket specified at the specified
path.

Python program for uploading a file to an S3 bucket
import boto.s3

conn = boto.connect_s3(aws_access_key_id=",
aws_secret_access_key=")

def percent_cb(complete, total):

print (".)

def upload_to_s3 bucket_path(bucketname, path, filename):
mybucket = conn.get_bucket(bucketname)
fullkeyname=o0s.path.join(path, filename)

key = mybucket.new_key(fullkeyname)
key.set_contents_from_filename(filename, cb=percent_cb, num_cb=10)

Amazon RDS — Python Exa

* In this example, a connection to RDS service is first established by calling
boto.rds.connect_to_region function.

» The RDS region, AWS access key and AWS secret key are passed to this function.

» After connecting to RDS service, the conn.create_dbinstance function is called to launch a new RDS
instance.

» The input parameters to this function include the instance ID, database size, instance type, database
username, database password, database port, database engine (e.g. MySQL5.1), database name, security
groups.

Example

#Python program for launching an RDS instance (excerpt)
import boto.rds

ACCESS_KEY="<enter>"

SECRET_KEY="<enter>"

REGION="us-east-1"

INSTANCE_TYPE="db.tl.micro"

ID = "MySQL-db-instance-3"

USERNAME = 'root'

48

PASSWORD = "password'

DB_PORT = 3306

DB_SIZE=5

DB_ENGINE ='MySQL5.1'

DB_NAME = 'mytestdb’

SECGROUP_HANDLE="default"

#Connecting to RDS

conn = boto.rds.connect_to_region(REGION,

aws_access_key id=ACCESS_KEY,

aws_secret_access_key=SECRET_KEY)

#Creating an RDS instance

db = conn.create_dbinstance(ID, DB_SIZE, INSTANCE_TYPE, USERNAME, PASSWORD,
port=DB_PORT, engine=DB_ENGINE, db_name=DB_NAME, security_groups = [
SECGROUP_HANDLE,])

Python for Map

* The example shows inverted index mapper program.

 The map function reads the data from the standard input (stdin) and splits the tab-limited data into
document-ID and contents of the document.

» The map function emits key-value pairs where key is each word in the document and value is the
document-ID.

Example

#Inverted Index Mapper in Python
#!/usr/bin/env python

import sys

for line in sys.stdin:

doc_id, content = line.split(*”)
words = content.split()

for word in words:

print *%s%s’ % (word, doc_id)

Python for MapReduce

* The example shows inverted index reducer program.
* The key-value pairs emitted by the map phase are shuffled to the reducers and grouped by the key.

» The reducer reads the key-value pairs grouped by the same key from the standard input (stdin) and
creates a list of document-I1Ds in which the word occurs.

* The output of reducer contains key value pairs where key is a unique word and value is the list of
document-IDs in which the word occurs.

Example

#Inverted Index Reducer in Python
#!/usr/bin/env python

import sys

current_word = None
current_docids = []

word = None

for line in sys.stdin:

49

remove leading and trailing whitespace
line = line.strip()

parse the input we got from mapper.py
word, doc_id = line.split(’*)

if current_word == word:
current_docids.append(doc_id)

else:

if current_word:

print *%s%s’ % (current_word, current_docids)
current_docids = []
current_docids.append(doc_id)

current_word = word

Python Packages of Interest
+ JSON

JavaScript Object Notation (JSON) is an easy to read and write data-interchange format.
JSON is used as an alternative to XML and is is easy for machines to parse and generate.

JSON is built on two structures - a collection of name-value pairs (e.g. a Python dictionary)
and ordered lists of values (e.g.. a Python list).

* XML
XML (Extensible Markup Language) is a data format for structured document interchange.

The Python minidom library provides a minimal implementation of the Document Object Model
interface and has an API similar to that in other languages.

*« HTTPLIib & URLLIib
HTTPLib2 and URLLib2 are Python libraries used in network/internet programming
« SMTPLIib

Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending email and routing e-
mail between mail servers. The Python smtplib module provides an SMTP client session object that can
be used to send email.

* NumPy

NumPy is a package for scientific computing in Python. NumPy provides support for large multi-
dimensional arrays and matrices
» Scikit-learn

Scikit-learn is an open source machine learning library for Python that provides implementations
of various machine learning algorithms for classification, clustering, regression and dimension
reduction problems.

Python Web Application Framework

Django is an open source web application framework for developing web applications in Python.

» A web application framework in general is a collection of solutions, packages and best practices
that allows development of web applications and dynamic websites.

+ Django is based on the Model-Template-View architecture and provides a separation of the data

model from the business rules and the user interface.

50

* Django provides a unified API to a database backend.
» Thus web applications built with Django can work with different databases without requiring any
code changes.

« With this fiexibility in web application design combined with the powerful capabilities of the
Python language and the Python ecosystem, Django is best suited for cloud applications.

» Django consists of an object-relational mapper, a web templating system and a regular-expression-
based URL dispatcher.

Django Architecture
Django is Model-Template-View (MTV) framework.
» Model

The model acts as a definition of some stored data and handles the interactions with the
database. In a web application, the data can be stored in a relational database, non-relational database,
an XML file, etc.

A Django model is a Python class that outlines the variables and methods for a particular type
of data.

» Template

In a typical Django web application, the template is simply an HTML page with a few extra
placeholders.

Django’s template language can be used to create various forms of text files (XML, email,
CSS, Javascript, CSV, etc.)

* View

The view ties the model to the template. The view is where you write the code that actually
generates the web pages. View determines what data is to be displayed, retrieves the data from the
database and passes the data to the template.

51

Text Book(s)

Internet of Things - A hands on
Approach Authors: Arshdeep
Bahga,

Vijay Madisetti Publisher:
Universities press.

Prepared by

R.Nagadevi,
Assistant Professor,
Department of BCA,

Reference Book
Internet of Things - Srinivasa
K.G., Siddesh G.M. Hanumantha
Raju R.
Publisher: Cengage Learning
India pvt. Ltd (2018).

Vidyasagar College of arts and science,

Udumalpet.

Reference Website :

www.studoc.com

52

	UNIT I
	Definition of IoT
	Characteristics of IoT
	Physical Design of IoT
	Generic block diagram of an IoT Device
	IoT Protocols

	Logical Design of IoT
	Request-Response communication model
	Publish-Subscribe communication Model
	Push-Pull communication model
	Exclusive Pair communication model
	REST-based Communication APIs
	WebSocket-based Communication APIs
	Exclusive Pair communication model (1)

	IoT Levels & Deployment Templates
	IoT Levels & Deployment Templates

	IoT LevelS
	A level-1
	IoT Level-2
	IoT Level-3
	IoT Level-4
	IoT Level-5
	IoT Level-6

	Domain Specific IoT
	Home Automation
	 Smart Lighting
	• Smart Appliances
	• Intrusion Detection
	• Smoke/Gas Detectors

	Cities
	• Smart Parking
	• Smart Roads
	• Structural Health Monitoring
	• Surveillance
	• Emergency Response

	Environment
	Weather Monitoring
	• Air Pollution Monitoring
	• Noise Pollution Monitoring
	• Forest Fire Detection
	• River Floods Detection

	Energy
	• Smart Grids
	• Renewable Energy Systems
	• Prognostics

	Retail
	• Inventory Management
	• Smart Payments
	• Smart Vending Machines

	Logistics
	• Route Generation & Scheduling
	• Fleet Tracking
	• Shipment monitoring
	• Remote Vehicle Diagnostics

	Agriculture
	• Smart Irrigation
	• Green House Control

	Industry
	• Machine Diagnosis
	• Indoor Air Quality Monitoring
	• Measure the environmental parameters to determine the indoor air quality

	Health & Lifestyle
	• Health & Fitness Monitoring
	• Wearable electronic

	UNIT II
	Machine-to-Machine (M2M)
	Machine-to-Machine (M2M) (1)
	M2M gateway
	Difference between IoT and M2M
	Communication Protocols
	Difference between IoT and M2M
	Hardware vs Software Emphasis
	• Data Collection & Analysis
	• Applications

	SDN
	Key elements of SDN

	NFV
	Key elements of NFV
	Virtualized Network Function (VNF):
	• NFV Infrastructure (NFVI):
	• NFV Management and Orchestration:

	NFV Use Case
	IoT System Management
	Need for IoT Systems Management

	Simple Network Management Protocol (SNMP)
	Limitations of SNMP

	YANG
	YANG Module Example

	NETCONF
	NETOPEER

	UNIT III
	IoT Design Methodology that includes:
	IoT Design Methodology - Steps
	Step2: Process Specification
	Step 3: Domain Model Specification
	Step 4: Information Model Specification
	Step 5: Service Specifications
	Step 6: IoT Level Specification
	Step 7: Functional View Specification
	Step 8: Operational View Specification
	Step 9: Device & Component Integration
	Step 10: Application Development
	• Auto
	• Light

	Unit-IV
	Python
	The main characteristics of Python are:
	2. Interpreted Language
	3. Interactive Language

	Python – Benefits
	1. Easy-to-learn, read and maintain
	2. Object and Procedure Oriented
	3. Extendable
	4 Scalable
	5. Portable
	6. Broad Library Support

	Python – Setup
	Windows
	Linux
	#Download Python
	#Install Python

	Numbers
	Example #Integer
	#Long
	#Addition
	#Subtraction

	Strings
	Lists
	Dictionaries

	Type Conversions
	Examples
	#Convert to int
	#Convert to float

	Control Flow – if statement
	Control Flow – for statement
	Control Flow – while statements

	Control Flow – range statement
	Control Flow – break/continue Statement
	Break
	Continue
	Control Flow – pass statement
	Example

	Functions - Default Argument
	Functions - Passing by Reference
	Functions - Keyword Arguments
	Functions - Variable Length Arguments
	Modules
	Packages
	File Handling
	Example

	Date/Time Operation
	Classes
	• Class
	• Instance/Object
	• Inheritance
	• Function overloading
	• Operator overloading

	IoT physical devices and End points
	What is an IoT Device
	IoT Device Examples
	1. Basic building blocks of an IoT Device
	• Actuation
	• Communication
	• Analysis & Processing

	Raspberry Pi
	Linux on Raspberry Pi
	• Raspbian
	• Arch
	• Pidora
	• RaspBMC
	• OpenELEC

	Raspberry Pi Interfaces
	• Serial
	• SPI
	• I2C

	UNIT V
	WAMP for IoT
	WAMP – Concepts
	• Transport:
	• Session:
	• Client:
	Publisher:
	Subscriber:
	In RPC model client can have following roles:

	Amazon EC2 – Python Example
	• AutoScaling Service
	• Launch Configuration
	• AutoScaling Group
	Example:
	Amazon AutoScaling – Python Ex
	Example: (1)
	Amazon AutoScaling – Python Exa
	Amazon S3 – Python
	Amazon RDS – Python Exa
	Example
	Python for Map
	Example (1)
	Python for MapReduce
	Example (2)
	Python Packages of Interest
	• XML
	• HTTPLib & URLLib
	• SMTPLib
	• NumPy
	• Scikit-learn
	Python Web Application Framework
	Django Architecture
	• Model
	• Template
	• View

